NASA Technical Memorandum 100955

Analysis and Optimization of Truncated
Scarf Nozzles Subject to External
Flow Conditions

{MASA~-TN-1C0655) ANALY¥SIS AM. CEI1IiKIZATLION N88-297 406

CF TEUNCR2IEL SCEZREF NOZZLiS SCEJECT 10

EXIEKNAL FLCW CCNLCITICNS E.S. Thesis -

Tcledo Upiv. (NBSA) &8 ¢ CSCL 01aA Unclas
53,02 016659569

Rickey J. Shyne
Lewis Research Center
Cleveland, Ohio

August 1988



E-4146

ANALYSIS AND OPTIMIZATICH OF TRUNCATED SCARF NOZZLES
SUBJECT TO EXTERNAL FLOW CONDITIONS

Rickey J. Shyne
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Results of a calculation of an optimized truncated scarfed nozzle
were compared. The truncated scarfed nozzle was designed for an exit
Mach number of 6.0, i.e., the Mach number at the last nozzle
characteristic is 6.0, with an external flow Mach number of 5.0. The
nozzle was designed by the Rao method for optimum thrust nozzles
modified for two-dimensional flow and truncated scarfed nozzle
applications. This design was analyzed using a shock-fitting method
for two-dimensional supersonic flows.

Excellent agreement was achieved between the design and analysis.
Truncation of the lower nozzle wall (cowl) revealed that there is an
optimum length for truncating the cowl without degrading the nozzle
performance. Truncation of the nozzle cowl past this optimal length
should be analyzed in trade-off studies for thrust loss versus gross
vehicle weight.

Plots of the oblique shock wave equations were also identified
which will allow computation of slip line angle, dynamic pressure
coefficient, or ambient Mach number for various specific heat ratios.
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NOMENCLATURE
speed of sound
coefficient in finite difference equations and cross-sectional area
area ratio, Ag/At

characteristic curve

thrust coefficient - T
] v2
2 PV A
function
integral

length, inches

mass flow rate

Mach number

static pressure

total pressure

dynamic pressure

coefficient in finite difference equations
radial distance

coefficient in finite difference equations
gas constant

distance

coefficient in finite difference equations
time

temperature and coefficient in finite difference equations
thrust

velocity in x-direction
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v velocity in y-direction
x Cartesian coordinate

y Cartesian coordinate

z axial distance

Greek Symbols

y ratio of specific heats

§ slip line angle, first variational operator, and coefficient in
two-dimensional flow equations

¢ oblique shock wave angle

A Lagrangian multiplier and slope of characteristic curve
u  Mach angle

v Prandtl1-Meyer expansion angle
¢ control surface angle

p density

© oblique shock wave angle
Subscripts

a ambient

e exit

PM Prandtl-Meyer

s shock

sl slip line

t throat

T total

+ left-running characteristic

- right-running characteristic

o streamline

vi



INTRODUCTION

In the design of jet aircraft, it is desirable to design for
optimum thrust while restricting the length of the exhaust nozzle for
overall vehicle weight reduction. In recent years, interest in
hypersonic and supersonic cruise vehicles has grown and presently
studies are being performed to evaluate the feasibility of such
vehicles. Exhaust nozzles designed for vehicles such as the high-speed
civil transport (Orient Express) will have to be optimized for thrust
while conforming to weight 1imits and other constraints imposed by
particular missions.

Early attempts to design optimum thrust nozzles focused on the
truncation of perfect nozzles. A perfect nozzle was designed for a
uniform exit velocity. This nozzle was then truncated at a given area
ratio. This process was repeated for designs with different uniform
exit velocities. Each truncation then provided a nozzle with a
different length for the desired area ratio. Examination of the
thrust versus length or weight considerations provided the basis of
selection of the desired optimal design.

Later attempts to design optimal nozzles involved the analysis of
a family of assumed shapes. A shape such as a parabolic contour was

assumed with a prescribed initial expansion angle and exit lip angle.



The angles were varied to provide a family of nozzle shapes. These
nozzles were then analyzed to determine the performance and the optimal
shape was therefore determined.

A method for designing an optimum thrust nozzle was developed by
Rao (1958) in which variational calculus and the method of
characteristics are used to compute the contour. The Rao optimization
technique is unique in that it does not depend on a preselected family
of mathematical functions for the contour and proceeds to find the
optimal wall contour within that family. The Rao method determines the
unique contour which yields the maximum thrust from the infinite array
of possible contours. It does not necessarily determine a contour
which can be specified by a simple mathematical equation.

The Rao method was incorporated into a computer program by
Nickerson (1982). The code computes a nozzle contour of optimum thrust
(1) for a given length, or (2) for a given area ratio, or (3) for both
fixed length and exit plane radius. The Rao method was originally
formulated for axisymmetric nozzles with circular throats as
fllustrated in Fig. 1. However, because of the renewed interest in
high-speed aircraft the method was modified to compute two-dimensional,
flat rectangular throat nozzles which can be used in ramjet engine
applications. Such a nozzle is shown in Fig. 2. The method was also
applied to designs where the lower nozzle wall (cowl) is terminated at
the point where the last characteristic that emanates from the upper
nozzle wall (ramp) intersects the cowl. This defines a two-

dimensional, nonsymmetric nozzle as shown in Fig. 2. The flat throat



FIG. 1. - SCHEMATIC OF AN AXISYMMETRIC RAO NOZZLE
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modification assumes an initial expansion of uniform flow followed by
a Prandtl1-Meyer expansion at the beginning of the turning section.

Significantly reduced vehicle weights can be obtained with two-
dimensional, nonsymmetric nozzles and further weight reduction can be
achieved by truncating the nozzle cowl upstream of the last nozzle ramp
characteristic. However, because of the truncation, the design of the
nozzle contour will be affected by the external flow as illustrated in
Fig. 3. If the nozzle flow is underexpanded, an oblique shock wave
and slip line will form at the exit because of the interaction of the
external and internal flows.

The incorporation of external flow considerations into the
optimization of exhaust nozzle contours defines the problem that is
studied in this thesis. The objective of this work is to present a
design method that may be used to compute optimized truncated scarfed
nozzles and to present results of a parametric investigation that

employs this method.



ANALYSIS
Rao Method

A procedure for computing axisymmetric, optimum thrust exhaust
nozzle contours was developed by Rao (1958). This method defines a
nozzle contour for an ideal gas with constant specific heats in an
isentropic flow. For this method, a control surface is defined at the
exit of the nozzle. The thrust is maximized such that the flow and
length of the nozzle are fixed constraints. The solution of the
external problem and the flow within the nozzle are then found by
using the method of characteristics. This procedure was recently
converted into a computer program by Nickerson (1982).

Figure 4 is a schematic of the top portion of a two-dimenstonal,
axisymmetric nozzle contour with the characteristic net and control
surface used for this analysis superimposed upon it. Line CE, in
Fig. 4 describes the control surface having an angle of inclination
¢ to the axis. Figure 5 is a differential element of the control
surface showing flow across it. Calculating the mass flow through

this differential element yields (1)

dm = pv sin(¢ - ©) dA. | (1
where dA = 27 r ds and ds = dr/sin ¢. To obtain the mass flow
crossing the control surface, the differential mass flow rate in

Eq. (1) is integrated along line CE



FIG. 4. - SCHEMATIC OF A RAO NOZZLE WITH CHARACTERISTIC NET AND
CONTROL SURFACE
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. sin(¢ - ©)
m Ic oV "ET%'$‘"' 2v r dr. 2)

The linear momentum flux in the z-direction is:

2 sin(é - ) cos ©

momentum flux = pv STn ¢ 2w r dr. (3)

Computing the thrust on the nozzle yields

E
2 sin(é - ©) cos © ]

T = IC [(p - pa) + pV Sin 6 2w r dr. (4)

The Tength of the nozzie is computed from

E .

L=z, + jc cot ¢ dr. (5)

For a fixed throat contour the length of the nozzle to point C, z., is

also fixed by the application of the entrance flow character and the

solution of the flow equations. Hence the length constraint becomes

IE cot ¢ dr = constant. (6)
Utilizing the Lagrangian multiplier method developed in Hildebrand

(1976) and reviewed in Appendix A, the problem can now be reduced to

maximizing the following integral:

E
I = jc (Fy 4 A,Fy + AgFa) dr N

where

_ 2 sin(é - ©)
f] = [(p - pa) + pVv STn o ]r (8)
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- sin(¢ - 6)
fz =V 1y ’ r (9

f3 a ot &. 10

Variational calculus principles reviewed in appendix B can now be
applied to Eq. (7). Maximizing I requires that the first variation
of the integral must be equal to zero. In turn, this will lead to an
expression for the control surface and the flow conditions along it.
The variation of I depends upon the optimization required. If the
thrust is maximized such that the length is constant but the area
ratio varies, then the upper limit of the integral is a variable and
contributes to the variation of I. The variation of I does not
depend on the lower limit. This can be illustrated by considering
that the integral between limits of points C and E can be expressed as
the sum of two integrals. One integral for the region between points
C and D and the other integral for the region between points D and E.
Since the throat contour is fixed, and hence, so is the resultant flow
the variation of the integral with the limits of points C and E
vanishes. Examining all possible variations of the quantities in I,
the following set of possibilities are derived:

(1) 8C, &M, 8§06, and &8¢ are zero along CD, since this portion of
the flowfield is fixed by the specification of the throat contour.

(2) &M, 60, and &8¢ are nonzero along DE.

(3) At E, 62 1s zero, but &rg 1is nonzero.

(4) Since M and © are continuous along CE, then &D, although

nonzero, does not enter into the first variation of 1I.
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Performing the first variation of the integral I, results in

r
E
8§l = 0 = f, + A f, + A f )SM + (f + A,F, + A\, f ) §0
Jr ( ‘M 2 ZM 3 3M ]9 2 2e 3 3e
D

+{f, + AF, + A, f ) §¢} dr + &r (f + AfF, + A, ) an
( 1¢ 2 2¢ 3 3¢ E\ 2 2'2 2'3 at E

where the subscripts M, ©, and ¢ denote partial derivatives and &
is the variational operator. Since the variations in &M, 66, §¢, and

§rg are arbitrary, each of their coefficients must be equal to zero,

thus,
fo +2f, + A f, =0 12)
]M 22M 33M
f. +A,f, + A, =0 a3
le 2 2e 3 3e
f.o +Af, +ANf, =0 (14)
1 2
o 2% 3
along line DE, and
f, + Af, + A\, f, =0 at E. as

1 22 33

If radial and axial distances at point E are both specified, the upper
limit is fixed and the last term in Eq. (11) disappears from the
variational solution. Since f3M = f3e = 0, these terms may be
eliminated from Egs. (12) and (13) and the two resulting equations are

combined to give

(16)
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The density, pressure, and velocity can be considered functions of Mach
number for isentropic flow and can be computed from isentropic flow

relations e.g., see Shapiro (1953) or John (1969). These relations are

-1/y-1
e (] . x_g_l MZ) an
Pr
-1 .2 -y/y-1
B 1+ (18)
P 2
-1/2
v = My'/2 (1 S MZ) . (19)

Note, the static parameters have been nondimensionalized with respect

to the total conditions. Utilizing Eqs. (17) to (19), it follows that

2
pM = - eﬁ- (20)
py = -PM (21)
Vo, = v (22)
M _ 12
M1+ 1—5—— MS ] .

(Equations 20 and 21 are nondimensionalized to total conditions and
Py = d(p/pT)/dM, Py = dp/dM, and Vy = dv/dM). The partial derivatives
f

and f2 are determined from Eqs. (8) and (9) to give:

Ty M

2 sin(é - ©) cos © _ szp sin($ - ©) cos ©

sin ¢

pve | 2pv

o= - 5 r (23)
M M (l s rz1 Mz)sin ¢

2
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and

f, = S‘2§ﬁ - 8) oV - VMp (24)
M M(1+L——"M2)

2
with p and p nondimensionalized to total conditions. Similiarly,
the partial derivatives f] and fz are found to be:
] ]

-r pvz[sin(¢ - 0) sin 6 + cos(¢ - ©) cos 6]

f]e = sTn 6 (25)
£ pv2 cos(é - ) r (26)
24 =" sin ¢ :

Substituting Eqs. (23) to (26) into Eq. (16) and rearranging yields:

_ ﬁ , 20 sin(e - ©) cos & _Mp sin(ti; g) cos © cos(é - ©)
M (1 s rzl MZ) sin ¢
sin(¢ - ©) p
= sine 1.2\ Mp
M{1+ 15— M |

X [sin(¢ - 0) sin 8 + cos(¢ - 8) cos e]

or
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-p (l + x—%—l MZ) cos(p - 8) sin ¢ + 2p sin(¢ - 6) cos @ cos($ - ©)

= p sin2 (6 -8) + p sin(d - ©) cos(¢p - ©) cos ©
2 y-1,2
- Mp sin® (¢ -0) sinO M|{] + 5 M®].

Combining Eqs. (17) and (18) results in the following expression for

density
p*ap(]+x'£_]M2).
This is then substituted into the relation above and the result is

rearranged to give:

M2 a 3 ] [cos(¢ - 0) - sin(¢ - ©) cos © cos(p - ©)
sin® (¢ - 8) sin®

+ sin (¢ - ® sin e] .

Utilizing the following trigonometric identities in this relation
sin(atB) = sin a cos Bzcos a sin B (27)
cos(azfl) = cos a cos B+sin a sin B (28)

and solving yields

MZ- 2] .
sin® (¢ - ©)

This can be expressed in terms of the Mach angle as follows

§ = stnGe - @ = sin g, (29)

and hence

¢=e+p. (30)
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This shows that the control surface is a left-running characteristic

and Eq. (30) implies that

4 . tante + p) along DE. (31
By Eq. (13)
_f]
o
R (32)
o

Introducing Eq. (30) into Eqs. (25) and (26) and applying the

! trigonometric identities gives:

£ r pv2 €os(® - uw)

19 sin ¢

f - r pv COS
2e sin ¢ ’

Substituting these relations into Eq. (32) and solving for kz gives

-v €cos(6 - u) ' (33)

Ay = cos u

Equation (14) can now be solved for x3

-, + A f
1 22
A = — ¢ (39)
3%
The partial derivatives f] R fz and f3 can readily be written as:
¢ ¢ ¢
pvzr cos 6 sin ©
f] = 5 (35)
0 sin"¢
sin ©
fz = pVr ——— (36)

¢ sin"¢
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-1
fa = . 37
3¢ sin2¢

Substituting Eqs. (35) to (37) and (33) into (34)‘y1elds:

oyl v cos(e - u)
x3 = pv'r cos 6 sin 6 - s p pvr sin ©

or

Cwle e cos 6 cos u - cos(® - p) ]
x3 =pvr sin o [ os 1 . (38)
Employing the trigonometric identity brings

Ay = -pv’r sin%e tan . (38)

Equations (30), (33), and (38) now yield the appropriate
conditions to calculate the control surface. The constants A and
A3 can be evaluated from the properties at point D. According to
Eqs. (30) the control surface must coincide with a left-running
characteristic. If this equation is satisfied, then it follows that
the compatibility equation for a left-running characteristic must also
be satisfied along the control surface, line DE. The compatibility
equation for axisymmetric, isentropic, irrotational flow as found in

Shapiro (1953) is

2
MS -1 M + sin u sin © dr = 0. (39)

de -
r sin(@ + p)
M(l+%l—M2)

It can be shown that Eq. (39) is satisfied by Eqs. (33) and (38).
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in order for the nozzle to be optimum for a fixed length

constraint, the condition in Eq. (15) must be satisfied at point E.

Utilizing Eqs. (8) to (10), (33), and (38), Eq. (15) becomes:

2 sin u cos © ] v cos(8 + u) sin u
[(p =P P Sinte s ~ 7 cos p PV STn(e + p

2

- Tpv sinze tan u cot(e + p) = 0,

which is the same as

P~ Pa _=2cosucos® 2¢0s0+ 1w _, <indg cot(o + W

T2 tan u sin(® + @) ' sin(@ + w)
2

The right-hand side of this equation may now be reduced by use of

trigonometric identities. The final result is

P - P,
sin 26 = ————— ; at point E.
7 pv tan p

NY|—

(40)

Equations (33) and (38) for Ap and A3 are used in conjunction

with the characteristic equations to define the flowfield and which

relate the variables r, 2z, M, and © are:

2
do = M -1 dM - ‘ dz
M(1+Y—§—‘M2) r(VMZ-lcote-l)
dr = tan(® + p) dz
along a left-running characteristic and
2
do = M -l M + ] dz
M(1+¥5—]M2) r(‘/Mz-lcote-l)

dr = tan(® - u) dz

(41)

(42)

(43)

(44)
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along a right-running characteristic, where the Mach angle u 1is

u=sin”! (%). (45)

The equations developed above are schematically shown in Fig. 6.

defined by:

For two-dimensional Cartesian geometries Eq. (38) is independent

of r and becomes
x3 = —pv2 sinze tan u. (46)

Equations (30) and (33) remain the same as for axisymmetric flow and
along with Eq. (46) provide two equations in the two unknowns M and
© and hence yield a constant M and © along the last
characteristic. The character of flow is therefore that of a simple
wave and this is in agreement with flow in the turning section of a

two-dimensional Cartesian geometry nozzle.

Scarfed Truncation Point Computation

A schematic of the nomenclature used in the scarfed computer
subroutine for computing the flow properties at a truncation point on
the nozzle cowl are shown in Fig. 7. Truncation of the nozzle to
point F allows the external flow to affect the mechanics of the
solution. Since the nozzle is assumed to be underexpanded, i.e., the
internal static pressure is greater than the ambient static pressure,
a Prandtl-Meyer expansion fan and an oblique shock wave emanate from

point F. Since the flow properties will differ in regions 2 and 2' in
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TRUNCATION POINT SUBROUTINE
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Fig. 7, a slip line also forms at point F from the expansion of the
internal flow. These flow phenomena are incorporated into the optimum
nozzle program.

Figure 8 is a computer flow diagram of the scarfed subroutine.
This subroutine computes the phenomena which occur at the cowl
truncation point. Data is input for the ambient and nozzle Mach
numbers Mz and My respectively, specific heat ratios and static
pressures. A check is performed on the ambient Mach number to
determine whether its value is greater than 1.0. If My fis
supersonic, the static pressure behind the Prandtl1-Meyer expansion is
initialized by setting it equal to the ambient static pressure. If
Ma 1is subsonic, the static pressure behind the Prandti-Meyer
expansion is initialized by computing the average of the ambient and
nozzle static pressures. The flow regions computed by the scarfed
subroutine are numbered as shown in Fig. 7.

Total pressures for the ambient flow and flow regions 1 and 2
along with the Prandti-Meyer expansion angle v, at state ! are now
computed from the isentropic flow equations developed in standard
compressible flow texts, e.g. see John (1969) or Shapiro (1953). These

relations are:

]

(47)

v/y-1
EI = [1 N2 MZ]

and

ve L tan =1 2 1) - tan! Y2 -1 (48)
y -1 y + 1
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l
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2
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Y
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PT1. NU1,
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|

>
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CALCULATE PHIC P2() = P2(n-1) +
PHI < 0.00001 FOR ITERATION > ( PHI(n—I))
SCHEME PHIC(N-1)

STop
RETURN

FIG. 8. - COMPUTER FLOW DIAGRAM FOR THE SCARFED TRUNCA-
TION POINT SUBROUTINE
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The total pressure at state 2 is set equal to the total pressure at
state 2', because the total pressure across the slip line is constant.
The Mach number at state 2 is next computed from Eq. (47) along with
the corresponding Prandtl-Meyer expansion angle. The total Prandtl-
Meyer expansion angle is then computed by calculating the absolute
value of the difference in expansion angles at states 1 and 2.

The next step in the scarfed subroutine is to perform a test on
the ambient Mach number to establish its value. For ambient Mach
numbers less than 1.0, the subroutine returns to the main Rao program.
For ambient Mach numbers greater than 1.0, the slip line angle, §, and
oblique shock wave angle, 8, are computed. The slip line angle is

computed from

Gy - DM
cot § = = tan © -1 (49)
2 (Mf sin%e - 1)
and the oblique shock wave angle from

P, 2yM sin%e - (y - 1)
2 1

5 = . (50)
1 vy + 1

Both expressions are developed in the Ames Tables (1953).

The absolute value of the difference of the total Prandtl-Meyer
expansion angle and the oblique shock wave angle, phi, is computed and
checked for convergence. A difference of 0.00001 between successive
passes was used as the convergence criteria in this study. If the

convergence test fails, the subroutine computes the derivatives of
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(47) to (50) and these are used in Newton's method for iterative

solution of simultaneous equations as developed in Press et al. (1986).

Newton's method consists of computing the difference of the initial
guesses and the derivatives of functions which define the guesses.

The derivatives are assembled in a 2-by-2 matrix which appears as:

dv  d§
dM de
oy
dM, de

The derivatives in the matrix above are defined as:

¢
de

sin § cos §

dp, Y(y - 1) Myp,
dM, = My + 1
2 (] N Mz)

1 1

€ -Nn*
e

Syl [zYMf Sy = 1) =y 4 1)5]

2

- X3l iy v g Gy - D)

(Note in the above § = pzlpa.)

-1
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2
dp2 i 4YaMapa sin © cos ©
e - Yy * 1

This square matrix can be solved by the determinant method. The value
of the determinant, phic, is based upon the values of the flow
quantities computed for each iteration. The difference in total
Prandti-Meyer expansion angle and oblique shock wave angle, phi is now
divided by phic and this value is then used to correct the initial
guess of the state 2 static pressure. This is expressed in equation

form as follows

P =Pyt (%%}E)n_] L no=1,2,..,0.
The computational procedure outlined is now repeated until convergence
is realized. The oblique shock wave angle, state 2 Mach number and
static pressure are then used in the Rao program for constructing the
right-running characteristic at the truncation point. The computer

listing of this subroutine is contained in Appendix C.

Slip Line and Oblique Shock Wave Computation
The oblique shock wave and slip line that occur at the cowl
truncation point may be curved or straight dependent upon the pressure
difference between the ambient and nozzle flowfields. In general, the
oblique shock wave and slip lTine will be curved because of the
additional expansion which takes place in the internal nozzle

flowfield. If the oblique shock wave is curved, the strength of the
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shock will vary from point to point. The flow downstream of the shock
is only isentropic along streamlines and is rotational because of
gradients in the entropy and stagnation properties normal to the
streamlines. For isentropic flows, the entropy is constant along
streamlines.

Zucrow and Hoffman (1977) develop the governing equations for
steady adiabatic flow of an inviscid compressible fluid, which are
used to derive the characteristic equations for a rotational
isentropic flow. The continuity, momentum, and speed of sound (used

in place of energy), equations are:

>
Ve (pv) =0 (51)
>
pg—%+Vp-0 (52)
Dp .2 Dp _
D _a® PBa 0. (53)

Expressing Eqs. (51) to (53) in Cartesian coordinates for two-

dimensional flow yields:

8oV

pu, + pvy + Up, + pr + y - 0 (54)

puu, + pVUy + Py = 0 . (55)

puv, + pvvy + py =0 (56)

up, + vp,, - aZUp - aZVp =0 (57
X y X y

where & = 0 for planar flow, and & = 1 for axisymmetric flow.
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The characteristic and compatibility equations which result from
Eqs. (54) to (57) for a two-dimensional isentropic rotational
supersonic flow developed in Zucrow and Hoffman (1977) are:

(a) Characteristic Equations

dy v

(dx) = xo =4 (streamline) (58)

(g%) =3, = tan@z)  (Mach Tines) (59
t

(b) Compatibility Equations

pv dv + dp = 0 (along streamlines) (60)
dp - a’dp = 0 (along streamlines) (61)

\/MZ -1 sin € dx_
—p;z——— dptde + 8 VW Cosezw) | - 0 (along Mach lines). (62)

Figure 9 shows a plot of the characteristics for steady two-dimensional
supersonic rotational flow. The characteristic and compatibility
equations derived for the Mach lines remain the same as those equations
derived for irrotational flow. However, two additional equations are
obtained. These are the streamlines (counted twice) and the
compatibility relations along the streamlines. The compatibility
equations are the Bernoulli equation and the speed of sound relation.
The finite difference equations derived by Zucrow and Hoffman for
two-dimensional steady isentropic rotational flow equations are:

Ayo = xo Axo (63)

Ro Avo + Apo =0 (64)
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8p, - Ao Bp, = 0 (65)
ay, =\, A, (66)
QtAp + Aet + StAx;t =0 (67)
2 (68)
Ao = a
2
Q- =1 (69)
pv
Ro = pV (70)
S § sin © n

~ YM cos(exp)

where C. denotes a right-running characteristic, C, denotes a
left-running characteristic and Co denotes a streamline as shown in
Fig. 9.

The numerical algorithms for applying Eqs. (63) to (71) are based
upon a modified Euler predictor-corrector method. In the predictor
step, each of the coefficients in the finite difference equations are
calculated at the known initial points. In the corrector step, average
values of the four primary dependent variables v, 8, p, and p are
computed along each three of the characteristics, and the coefficients
of the finite difference are calculated by employing those average
properties. This numerical integration algorithm is termed an average
property method.

The steady two-dimensional supersonic rotational flow equations

derived above have to be incorporated into the Rao computer program to



3

complete the construction of the flowfield between the external oblique
shock wave and the slip line. Figure 10 provides an indication of the
changes incorporated into the Rao computer program. The top portion,
Fig. 10¢a), shows left and right-running characteristics emanating from
the nozzle cowl. The bottom portion, Fig. 10(b) is a schematic of the
mesh used to calculate the rotational flow. The truncation point on
the nozzle cowl corresponds to grid point 11 on the mesh. The flow
conditions at this grid point were calculated by the scarfed routine
discussed previously.

The flow properties at grid point 21 are computed by assuming that
the flow properties at this point are defined by right-running flow
characteristics from the internal flow (which is discussed below) with
an assumed Mach number. The program then iterates using the continuity
relation between the left-running characteristic from point A to
point 11 and the right-running characteristic from point A to point 21
to establish the ffnal value of the conditions at point 21. Once the
flow properties are determined at grid point 21, the properties at
grid points 11 and 21 are used to find the flow properties at grid
point 23 using the oblique shock wave relations and the method of
characteristics for rotational isentropic flow. The conditions at
points 21 and 23 are then iterated upon until convergence is realized
in the pressure loss across the oblique shock wave. The flow
properties at grid point 22 are computed by taking an average of the
properties at grid points 21 and 23. The flow properties at following

mesh points are subsequently computed.
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Interior Point Computation

As the calculation proceeds, a numerical algorithm is required
for calculation of an interior point. The finite difference network
used in this analysis is illustrated in Fig. 11. Figure 12 is a
schematic of the unit process for determining an interior point.
Points 1 and 2 are initial-data points on the C_ and C, Mach lines
and line 12 connects these points. The rearward running streamline
Co fintersects line 12 at point 3 and the properties at point 3 are
computed by linear interpolation.

The following four equations are obtained by writing Eqs. (63)
and (66) in finite difference form in terms of points 1, 2, 3, and 4,

and from the equation of the diagonal line 12.

Y3 = 2oX3 = Y4 = A% a2
Yg = A Xg =Yy - A Xy (73)
Yg - A Xg =¥y - AX (74)

Y37 Ma¥3 = Y37 Nk 75
where Xj2, A\,, A_, and Ap, are the slopes of line 12, the left-
running characteristic, the right-running characteristic, and the
streamline, respectively. Equations (72) to (75) are solved
simultaneously for x3, y3, x4, and y4q. The quantities v, o, p,

and p are then calculated by linear interpolation as discussed

above. The Euler predictors for an interior point are:

A, = tan(e2 + pz) (76)
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A= tan(e] - p]). an

The value of Ay depends upon the flow angle at point 3, which
is not known until point 3 is located and the corresponding flow
properties have been calculated by 1inear interpolation. An iterative
procedure must be employed for determining the location of point 3
during each pass through the modified Euler predictor-corrector
algorithm. The initial estimate for ©3 is obtained for the Euler
predictor as follows:

Equations (76) and (77) are then solved simultaneously for x3 and
y¥3, and the corresponding ©3 is found by linear interpolation. The
procedure may then be repeated using the new value 63 to obtain
improved values of x3, y3, and ©3. The procedure is repeated until
the change in the values of x3 and y3 diminish below the specified
tolerance.

The compatibility equation, Eq. (67) which is valid along Mach

lines, may be written in finite difference form as:

QPy *+ 0, =T, (79)
QP+ 6, =T_, (80)
where
T+ = -S+(x4 - xz) + Q+p2 + 92 81
T =-S_(xg - %) +Qp, -6 - (82)

For the Euler predictor the following equations are derived:
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2 § sin ©
Q, = : 3 ] S, = VM, cos(® 2+ ) (83)
PyV5 Yo" 2 * W
2 § sin®
M- -1 1
Q = S = (84)
- p]V% - y]M] cos(e] + p])
These equations are now solved simultaneously for pgq and 64.
Writing Eqs. (64) and (65), the compatibility equations valid
along streamlines, in finite difference form gives
Rov4 + Py = Rov3 + Py = To] (85)
Pg = APy = P3 = Ay = To, (86)
For the Euler predictor
R = paVa , A = a2 (87)
o~ P3'3 "o T %3 '

where a = a(p, p). Equations (85) and (86) are now solved for vy
and pg. This completes the application of the Euler predictor
algorithm. The computational equations derived for steady two-

dimensional isentropic rotational supersonic flow are summarized as

follows:
Y3 = AX3 =Yg - XXy (72)
Yg - A Xg = Yy - N X (73)
Yg = A Xg = ¥ - ALK (74)

Y3 = Ma¥3 = Yy - M, (75)
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QP + 8, =T, (79)
Qg -6y =T_ (80)
RV + Py = To] (85)
Py - Aop4 - Toz (86)

Improved values for the location of and the corresponding flow
properties at point 4 may be computed by repeating the steps outlined
above for the Euler predictor algorithm, but employing average values

of v, ©, p, and p along each characteristic. Hence,

A, = tande, + p,) (88)
where
Py + Py 0, + 8 Vo + Vy Py + Py
P, = 2 ' e+ - 2 A 2 o P 2 (89)

For a simple thermodynamic system

a = a(p, p) (90)
and it follows
a = a(p+, p+) 9
Then,
v
+ -11[1
M+ =3 a = sin (ﬁ—). (92)
+ +

The coefficients A_, A9, Q;, Q_, S,, S_, Ry, and A, are determined
in a similar manner.
The speed of sound, a, now has to be determined from Eq. (91).

Assuming a perfect gas, Eq. (91) takes the form
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a2 - X2 (93)
P

Correspondingly, the temperature T, is given by

T = T(p, p) (94)
and for a perfect gas
T=-2L (95)
PRy

The pressure p and density p are used to calculate the temperature
T, Mach number M, and the speed of sound a, in a separate subroutine.
By calculating the fluid properties in this manner, the different unit
processes can be determined by the method of characteristics, which are
independent of the equations of state for the fluid.

Iteration and convergence are controlled on the axis of symmetry.
The ratio sin ©2/y2 1in the coefficient S 1{s approximated by the
ratio sin ©y/yy; for the predictor. For the corrector, that ratio is

based upon average values of © and y, which are nonzero.

External Shock Wave Point Computation
Figure 13 illustrates schematically the unit process for
determining an external shock wave point. Properties are known at
point 1 on the downstream side of the shock wave, and point 2 is a
known point on the previous right-running Mach line 12. The free-
stream flow properties My, Vo, Pw, and po are also known. Point 4,
on the downstream side of the shock wave, is the external shock wave

point. This point is located at the intersection of the shock wave
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from point 1 and the left-running Mach 1ine 24. The slope of shock
wave 14 is computed from the average value of the two wave angles e
and ep at the poinfs 1 and 4, respectively. These wave angles are
functions of the free-stream Mach number M and the flow turning
angles ©7 and 64.

To determine the location of, and the properties at point 4, an
iterative procedure is employed. A value of the wave angle eq fis
assumed at point 4. The finite difference equation for the shock

wave 14 is

€~|+84
Yg = Y1 = Ag{%g - xg) = tan 5 (xq = %) (96)

and the equation of the left-running Mach line 24 is
Yg - ¥y = )\+(x4 - xz). (97)

The location of point 4 is computed by solving Eqs. (96) and (97)
simultaneousiy for x4 and ygq. Equation (79), the single
compatibility equation valid for left-running Mach lines, must also be

satisfied for this computation.

Incorporation of Rotational Flow
The equations developed for the interior point and external shock
wave point computation have to be incorporated into the Rao program.
The flow diagram in Fig. 14 illustrates how this can be accomplished.
A point on the slip line is computed as previously described. A

comparison is now performed to determine if the ambient static pressure
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fs less than the nozzle static pressure. If the ambient static
pressure is greater than the nozzle static pressure, the subroutine
returns to the main program (this case would depict a shock wave
forming in the interior of the nozzle and this analysis will fail for
this case). If the ambient static pressure is less than the nozzle
static pressure, the computation continues.

Next, the interior point is examined to determine whether it is
the first point after the scarfed truncation point. If it is the first
point, the routine computes a shock point using the external shock wave
point routine. A shock loss is then computed and compared to the
pressure behind the shock wave. If this loss agrees with the pressure
behind the shock wave additional interior points are considered. These
points are moved and readjusted into arrays. The routine then advances
to the next characteristic and the computation returns to the main
program.

On the other hand, if the point computed on the slip 1ine is not
the first point after the scarfed truncation point, an interior point

computation is performed. If this interior point is upstream of the

first slip 1ine point (see Fig. 10), this point is discarded and the
next point is used. If this point is downstream of the scarfed
truncation point, all interior points are calculated. A shock point is
subsequently computed and the computation continues as described above.
The computation of the kernel continues downstream until the contour is

defined.
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Seagull Analysis

The design of a truncated scarfed nozzle can be analyzed using a
shock fitting method for two-dimensional supersonic flows. This shock
fitting method referred to as Seagull, was developed by Salas (1976).
Seagull can be used to analyze complex two-dimensional or axisymmetric
supersonic inviscid flows of a perfect gas. Seagull is limited to
analyzing flows whose axial component of Mach number remains supersonic
(hyperbolic equations of motion are used in this analysis and for
subsonic flows these equations become elliptic). This code can be used
to compute flowfields produced by a single duct or several ducts that
are merged. Jets and plumes can also be analyzed by Seagull. This

code will be used in this thesis for a comparison with the results from

the Rao method.

Flow Correlations
Manipulation of Eqs. (49) and (50) produces a functional
relationship for the external and nozzle Mach numbers, oblique shock
wave and slip line angles, ambient and nozzle static pressures, and
dynamic pressure coefficient.

Rearranging Eqs. (49) and (50) yield the following relations:

Py - P
(o)) s
9 Y

(p2 - p])/q]
2 - (p2 - p])/q2 :

I

(98)

N

99

tan § = [
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These relations exhibit a mathematical relationship of a linear nature,
f.e, having the form y = mx + b, and can be graphically presented.
This cén provide a simple graphical representation of the flow

conditions at the truncated cowl! 1lip point.



RESULTS AND DISCUSSION
Flow Correlations

Equations (99) and (100), the relations relating the slip line and
oblique shock wave angles, ambient and nozzle static pressures, are
plotted in Figs. 15 and 16.

Figure 15 is a plot of dynamic pressure coefficient times specific
heat ratio versus oblique shock wave angle for constant values Mach
number. Straight Tine curves result for this plot and this illustrates
the linear nature of Eq. (99). For a given dynamic pressure
coefficient, ambient specific heat ratio, and ambient Mach number, the
oblique shock wave angle can be determined or for any of three
previously mentioned flow parameters, a fourth can be determined.

A plot of oblique shock wave angle versus dynamic pressure
coefficient for constant values of slip line angle is shown in Fig. 16.
The curves in this plot were constructed for slip line angles of 1.0°,
2.0°, 10.0°, 25.0°, and 50.0°. These curves exhibit a hyperbolic
behavior due to the cotangent trigonometric function in Eq. (100). As
the slip 1ine angle is increased the curves become progressively linear
and tend towards infinity as the dynamic pressure coefficient is

increased.

46
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Truncated Scarfed Nozzle Computation

A truncated scarf nozzle was calculated for a design Mach number
of 6.0, i.e, the Mach number at last nozzle characteristic is 6.0 with
an external flow Mach number of number of 5.0, and external and
internal specific heat ratios of 1.4. An area ratio of 90.0, nozzle
ramp length of 300.0 inches, nozzle cowl length of 15.0 inches, nozzle
throat Mach number of 1.24, nozzle throat temperature of 2500 °R,
along with ambient static pressure of 0.150 psia and 100 psia for the
nozzle throat total pressure complete the input used for this design.
Pressures and coordinates computed in this analysis are
nondimensionalized with respect to the nozzle throat conditions.

A nontruncated scarfed nozzle was also designed to compare the
effect of truncation. The nontruncated nozzle was computed for the
same design Mach number as the truncated nozzle (the external flow does
not affect the nozzle computation, refer to Fig. 2). The nontruncated
nozzle computation requires approximately 10 seconds of cpu time on an
IBM 3033 mainframe computer, while the truncated scarfed case requires
approximately 20 seconds of cpu time.

Figure 17 is a plot of nozzle cowl length versus nozzle thrust
coefficient. The scarfed nozzle designed for a Mach number of 6.0 was
selectively truncated for nozzle cowl lengths ranging from 50 inches to
12.5 inches. A nozzle thrust coefficient of 1.6661 is computed for
the nontruncated case and is invariant with cowl truncation down to
20.0 inches. Truncating the cowl shorter than 20.0 inches will cause

the nozzle thrust coefficient to drop sharply as shown in Fig. 17. A
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nozzle cowl length of 20.0 inches corresponds to point where the last
nozzle ramp characteristic intersects the cowl surface as fllustrated
in Fig. 2.

The nontruncated nozzle and truncated scarfed nozzle were then
analyzed with the Seagull code. These computations were performed on
the Cray X-MP supercomputer and required approximately 30 seconds of
cpu time per case.

Figures 18 to 22 are plots of flow path geometry, static pressure,
axial velocity, axial Mach number, and Mach number contours for the
nontruncated nozzle. Figures 19 and 20 display smooth distributions of
static pressure and axial velocity plots, where the Mach number
distribution in the plot of Fig. 21 shows a wave in the lower wall Mach
number. The wave can be attributed to the Prandtl-Meyer expansion fan
which occurs at the beginning of the turning section past the throat
section and the intersection of the two families of characteristics.
This slight compression wave is clearly shown in Fig. 22 in the Mach
number contour plot.

The analysis of the truncated scarfed nozzle case are presented in
Figs. 23 to 28. figure 23 is a plot of the flow path geometry with the
cowl truncated at 15.0 inches. The solid line extending past this
point is a boundary drawn by the Seagull program. Figure 24 contains
the static pressure plot of the truncated scarfed nozzle and shows an
abrupt drop in the static pressure distribution on the lower wall at
the truncation point. The lower wall static pressure becomes equal to

the freestream static pressure slightly beyond the truncation point.
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Figure 25 displays the computed axial velocity distribution. As
exhibited in the static pressure distribution, the axial velocity drops
to the freestream velocity after the truncation point. The Mach number
distribution also displays a similar behavior and shows that the
truncated scarfed nozzle does not internally expand as much as the
nontruncated nozzle. This clearly illustrates the effect of the
external flow on the expansion of the internal flow as shown in
Fig. 26.

Figures 27 and 28 are plots of the oblique shock wave and slip
11ne and Mach number contour for the truncated scarfed nozzile.

Figure 27 displays the oblique shock wave and slip line emanating from
the cowl truncation point. The slip line initially diverges from the
internal flow and then converges as the effect of the external flow
increases with nozzle length. The Mach number contour plot in Fig. 28
clearly illustrates the interaction of the external and internal flows.
The slip line is depicted by the coalescing of contour lines in the
center of the plot and the strength of the oblique shock wave is shown
in the bottom portion of the figure. Also, the Prandtl-Meyer

expansion fan interacts with the slip line in this case instead of the
nozzle cowl wall in the nontruncated case.

Figure 29 is a comparison of nozzle ramp wall Mach Number
distributions for the truncated scarfed nozzle. The Rao design and
Seagull analysis compare very favorably except for the corner region
where the compression wave occurs. This is illustrated by the jump in

Mach Number at approximately 2.0 inches as shown in Fig. 29.



60

5500 —

5000

4500 & VELOCITY
PLOT

S
o O  UPPER
g 14000 O  LOWER
Lt
>

3500

3000 B

50 100 150 200 250 300

STATION LOCATION

FIG. 25. - WALL AXIAL VELOCITY PLOT OF TRUNCATED SCARFED
NOZZLE



MACH NUMBER

61

MACH

NUMBER

. PLOT
0O  UPPER

O  LOWER

I R R R

0 50 100 150 200 250 300
STATION LOCATION

FIG. 26. - WALL AXIAL MACH NUMBER PLOT OF TRUNCATED
SCARFED NOZZLE



62

O SHOCK
O SLIP LINE

TRUNCATION
POINT

FIG. 27. - OBLIQUE SHOCK WAVE AND SHEAR LAYER PLOT OF TRUNCATED
SCARFED NOZZLE



63

.2400
4465
.6529
.8594
.0658
2723
4788
.6852
.8917
.0982
.30u6
SN
J175
.9240
. 1305
.3369
5u34
.7498
.9563
. 1628

- N IO VO 22EBEMXRNGCC~—~ITIOOTMoOoDOmD
V& &2 22 WWWWWNNNNNRQDQ@D-2

/
A BCOEFGH LKL MW 0 BORT

—COWL
TRUNCATION
POINT

MACH NUMBER

FIG. 28. - MACH NUMBER CONTOUR PLOT OF TRUNCATED

SCARFED NOZZLE



WALL MACH NUMBER

64

o RAO
6 — 0 SEAGULL

.+ 1 ¢

0 30 60 90 120 150 180 210 240 270 300

NOZZLE RAMP LENGTH, IN.

FIG. 29. - COMPARISON OF NOZZLE RAMP WALL MACH NUMBER
DISTRIBUTIONS



CONCLUDING REMARKS

Results of a calculation of an optimized truncated scarfed nozzle
were compared. The scarfed nozzle design showed less expansion than
the nontruncated case and this was primarily due to the external flow
affecting the internal flow expansion within the nozzle.

The comparison of thrust coefficient versus nozzle cowl length
revealed that truncation of the cowl will affect the overall
performance of an exhaust nozzle. This comparison demonstrates that
there is an optimal cowl length in which truncation can be performed
without degrading the overall nozzle performance. Truncation of the
cowl past this optimal length should be analyzed in trade-off studies
for thrust loss versus gross vehicle weight.

Plots of the oblique shock wave equations will allow the
calculation of oblique shock wave and slip line angles, dynamic
pressure coefficient, or ambient Mach number for various specific heat
ratios. This will allow a designer to compute these flow quantities
directly from the plotS presented without use of the compressible flow
equations.

The truncated scarfed nozzle method developed in this thesis can
be extended in the future. The method can be modified to compute an
optimum truncated scarfed nozzle with an oblique shock wave forming
internally and simple chemical kinetics could also be incorporated

into this method.
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APPENDIX A
LAGRANGIAN MULTIPLIERs

Situations occur in many engineering applications in which a
function f is to be maximized or minimized dependent upon variables
which are not independent of each other, but are interrelated by one
or more constraint conditions.

The general case may be illustrated by the problem of maximizing or
minimizing a function f(x,y,2), so that f(x,y,z) = relative max or

min subject to two constraints of the form

gi{x,y,2) 0, (A.1)

hix,y,z) =0, (A.2)

where g and h are not functionally dependent, so that the
constraints are neither equivalent nor compatible. It is assumed that
the functions f, g, and h have first partial derivatives everywhere
in a region which includes the desired critical point.

The function f 1is an extremem at P(xg, Yo, 2o) if the linear
terms in Taylor expansion of f about P are zero. This condition
can be written in the form

fx dx + fy dy + f; dz =0 | at  (xg, Yo. Zo)- (A.3)
However, the increments dx, dy, and dz are not independent, so it

cannot be concluded that fy, fy, and f; must vanish separately at
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P. Since g and h are constant throughout the field, the
differential of each must be zero at the point P, so that
gx dx + gy dy + gz dz2 = 0 at  (xo, ¥Yo. 2Z0) (A.4)
hy dx + hy dy + hz dz = 0 at (xg, Yo, 2Z0). (A.5)
Equations (A.4) and (A.5) are linear equations in dx, dy, and dz.
These equations can be uniquely solved for two of the differentials in
terms of a third if and only if g and h are functionally
independent. By making use of Eqs. (A.4) and (A.5) two of the
differentials (say dx and dy) can be eliminated from Eq. (A.3).
This results in an equation of the form F(x,y,z) dz = 0, in which the
one remaining differential can be arbitrarily assigned. In essence
the conditions in Eqs. (A.4) and (A.5) along with the condition
F(x,y,z) = 0 constitute a set of three equations in the three unknowns
X0, Yo» and Zq.

An alternative method of frequent usefulness, is based on the fact
that one may multiply the equal members of Eqs. (A.4) and (A.5) by
arbitrary constants, say, A} and Ay, respectively, and add the
results to Eq. (A.3) to obtain the requirement that
(Fx + Mgy + A2hy) dx + (fy + Aagy + Azhy) dy

+ (f3 + gz + Nghg) dz = 0 (A.6)
at (xg, Yo» Zo). This expression is valid for all values of X} and
A2. The latter which can now be determined so that the coefficients
of two of the differentials are zero. If the preceding statement were

not true, it would follow that
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and hence g and h would be functionally dependent, so that the two
constraints would be either equivalent or inconsistent. Assuming

that A; and 2Ap have been so determined, then the remaining
differential can be arbitrarily assigned, so that its coefficient also
must vanish. Thus, the three equations

fx + X]gx + kzhx =0

fy + X]gy + thy =0 at (xo, Yo zo) (A. T
fz + X]gz + thz =0
along with the conditions
g =0, h=0 at (xo, Yo, 20) (A.8)

comprise five equations in the five unknown quantities Xgo, Yo. 20, A1,
and .

The parameters X; and A2 are referred to as Lagrangian
multipliers. If these parameters were eliminated from Eq. (A.6), the
result would be the relation F = 0 obtained by eliminating dx, dy,
and dz from Eqs.(A.3) to (A.5).

The relations in Eq. (A.7) provide the necessary conditions
Ex = 0, &y = 0, &z = 0 so that the “auxillary function"
£ ="Ff + A9 + X\h (A.9)
attains a relative maximum or minimum at (xq, Yo, 2o) when no

constraints are imposed.
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The more general case would be if f were to be maximized subject
to the restraints g7 =0, g2 = 0,..., g = 0. The auxiltary function
would then be

E="F + N9 + 2292 ... + ApGp, (A.10)
where Ay, ..., A2 are unknown constants. The necessary conditions
for rendering £ a relative maximum or minimum with no constraints
could be written and the solution could be subsequently determined.

Further explanation of the use of Lagrangian multipliers can be

found in Hildebrand (1965 and 1976).



APPENDIX B
CALCULUS OF VARIATIONS

The calculus of variations is a mathematical procedure employed
to determine one or more functions, subject to certain conditions, so
as to maximize or minimize a specific definite integral, whose
integrand depends upon the unknown function or functions and/or
certain combination of their derivatives. The brief discussion of the
theory of calculus of variations which follows is presented in greater
detail in Hildebrand (1976).

To illustrate this method an example is considered. A case is

considered in which we wish to maximize or minimize an integral of the

form
b
I =j F(x,u,u') dx, (8.1)
a

subject to the conditions
u(a) = A, u(b) = B, (B.2)
where a, b, A, and B are specified constants. The function F has
continuous second-order derivatives with respect to its three
arguments. It is further required that the unknown function u(x)
possess two derivatives everywhere in the interval (a, b).
Functions which have two derivatives in (a, b) and which take on

the prescribed end values are admissible and out of all admissible
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functions, a function (or functions) must be selected which makes I a
maximum. Assuming there is one function u(x) having the property
above, a one-parameter family of admissible competing functions which
includes u(x), is first written as

u(x) + en(x)
where n(x) is any arbitrary chosen twice-differentiable function which
vanishes at the end points of the interval <(a, b), i.e,

n(a) = n(b) = 0, (B.3)
and where € 1is a parameter which is constant for any one function in
the set but which varies from one function to the next. The increment
en(x), representing the difference between the varied function and the
actual solution function, is called a variation of u(x).

Replacing u(x) by u(x) + en(x) in I yields another integral
that is denoted by 1I(e),

b
I(e) = f F(X,u + en,u' + en') dx. (B.4)
a

It then follows that 1I(e) takes on a maximum value when € = 0, that

is, when the variation of u 1is zero. Hence, it must follow that

95151‘= 0  when ¢ =0. (B.5)
€

The partial derivatives of F are assumed to be continuous with
respect to its three arguments and this implies that the derivative
dF/de exists. Hence, I(e) under the integral sign may be

differentiated to obtain
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dI(e) Ib [BF(X,U + en,U' + en') 9F(x,u + en,u' + en') .]
glie) _ n'{dx.

de a alu + en) n+ a(u' + en")

By setting e = 0, an expression for the condition (B.5) is obtained,

viz.,

b

. aF aF i
§1'(0) = ja [au a0 + & (x)] dx = 0 (B.6)

in which it is written that F = F(x,u,u') and therefore the partial
derivatives dF/du and dF/3u' have been formed with x, u, and u'
treated as independent variables.

Transforming the integral of the second product in Eq. (B.6) via

an integration by parts yields

b b
b
J g%T n' (0 dx = [%ET n(x)] . J g7 (357) n(x) dx

a a a
- J %; (257) n(x dx
a
as a consequence of Eq. (B.3). Equation (B.6) now becomes

b

J [%; (gET) - g% ] n(x) dx = 0 (B.7)

a
It can be proven that, Eq. (B.7) is true for any function n(x)
which is twice differentiable in (a, b) and zero at the ends of that
interval. Consequently, the coefficient of n(x) in the integrand

must be zero everywhere in (a, b), so that the condition



d (8 ) _8F _
i (au') - =0 (B.8)

must be satisfied. This is called the Euler equation associated with
the problem of maximizing or minimizing the integral in Eq. (B.1)
subject to Eq. (B.2).

Recalling that F, and hence its partial derivatives, may depend
upon x both directly and indirectly, through the intermediate

variables u(x) and u'(x), it is deduced from the chain rule that

M _ M My, M g
dx — 8x " 3u dx " 3u' .

[ =

(B.9)

N

where the function M may be identified with F or with one of its
partial derivatives. Thus, in particuiar, we can employ M = 3F/3u'

to write the Euler equation in an expanded form as

¢’y du .
M AAE REUMERRER (B.10)

The expanded form shows that when Fyiyr = 32F/au'2 s zero, the
equation is in fact a differential equation of second order in wu,

subject to the two boundary conditions wu(a) = A and u(b) = B.

From Eq. (B.8) it follows that

aF = constant when F = F(x,u'), (B.11)

au'

so that, when F does not involve u explicitly, the first-order
equation 9dF/3u' = constant comprises a "first integral" of the Euler

equation. It can also be shown that Eq. (B.8) implies that
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O - Faconstant  when  F = FCuu), (B.12)
so that the first integral is also available when F does not involve
x explicitly.

The equation above can be generalized to maximize or minimize an
integral subject to a constraint condition. To maximize or minimize

Eq. (B.1)
b
I F(x,u,u') dx = max or min, (B.13)
a

where u(x) i1s to satisfy the prescribed end conditions
w@ = A,  u(b) = B, (B.14)

as before, but that also a constraint condition is imposed in the form
b

[ euun dx =k, (B.15)
a

where K 1is a prescribed constant. For this case, the appropriate
Euler equation is found to be the result of replacing F 1in Eq. (B.8)
by the auxiliary function

H=F+ G (B.16)
where A 1s a Lagrangian multiplier and is equal to an unknown
constant. This constant will generally appear in the Euler equation
and in its solution. This constant has to be determined along with
the two constants of integration in such a way that the three

conditions of Eqs. (B.15) and (B.16) are satisfied.



APPENDIX C
SCARFED TRUNCATION POINT SUBROUTINE
A computer routine for determining the flow properties at the
truncation point is presented of a two-dimensional nozzle is

presented. The following equations are used in this analysis

P v/y-1
I, [1 a1 MZ] (.1
p 2
v = 4ftE1 tan] ‘/1—‘—-1 M - 1) - tan”) WM - (C.2)
vy -1 y + 1
(v + DM
cot § = tan © 5 5 -1 (C.3)
202 sin%e - 1
p, 2yM stn’e - (y- D
P2 _ (C.4)
p] y + 1

These equations are used to compute static and total pressure,
Mach number, slip line angle, oblique shock wave angle, and Prandtl-
Meyer expansion angle at the scarfed truncation point. These flow
relations can be used to analyze the flow phenomena at the truncation
point. The truncation point and flow phenomena described previously is
schematically shown in Fig. C1. A computer flow diagram is presented

in Fig. C2. The listing of the computer program is also provided.
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FIG. C1. - SCHEMATIC OF TRUNCATED TWO-DIMENSIONAL RAO NOZZLE
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ORMLith. PAGE IS
OF POOR QUALMTY

INPUT
M1, MA, PA, P1,
GM. GMA

;

P2 = PA

INITIALIZE P2
P1 o+ pPA

?

Y

CALCULATE
PT1. NU1,
P12, PTA

CALCULATE
M2, NU2. DELPM

|

YES

CALCULATE
THETA, DELSL.
PHI

l

CORRECT P2
CALCULATE PHIC P2(n) = P2(n-1) +

FOR ITERATION > ( PHl(n-1)>
SCHEME \PHIC(n-1)

STOP
RETURN

FIG. C2. - COMPUTER FLOW DIAGRAM OF SCARFED TRUNCATION
SUBROUTINE
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0000100 C
0000200 C...THIS ROUTINE COMPUTES THE FLOW QUANTITIES REQUIRED FOR THE SCARFED

0000300 C...NOZZLE OPTIMTIZATION

0000400 C

0000500 REAL NU1,NU2(200),M1,M2(200),MA,P1,P2(200),PA,PT1,PT2,PTA
0000600 REAL GM,GMA,DELSL(200) ,DELPM(200),THETA(200),PHI(200),PHIC(200)
0000700 REAL DNU2DM(200) ,DDLDTH(200),DP2DM2(200) ,DP2DTH(200)

0000800 REAL A,B,X,Y,Z,P,G,H

0000900 REAL PR1,PR2,PR3,PR4,PRS

0001000 READ(5,10,END=1) M1,MA,PA,GM,GMA

0001100 10 FORMAT(5(F12.5/))

0001200 1 I=]

0001300 77 READ(S,11) P1
0001400 11 FORMAT(F10.5)

0001500 IF( P1 .EQ. 1.0 ) GO TO 30

0001600 IF( MA .GT. 0.0) GO TO 1§

0001700 GO TO 20

0001800 C

0001900 C...INITIALIZE STATIC PRESSURE AT STATE 2, P2
0002000 C

0002100 15 P2(I)=(P1+PA)/2.

0002200 GO TO 25

0002300 20 P2(I)=PA

0002400 C

0002500 C...CALCULATE THE TOTAL PRESSURE AT STATE 1
0002600 C

0002700 25 PT1=P1°((1.+ (GM-1.)/2. *(M1**2.Q))**(GM/(GM-1.))})
0002800 C

0002900 C...CALCULATE THE PRANDTL-MAYER ANGLE NU, AT STATE 1
0003000 C

0003100 NU1l=(SQRT ((GM+1.)/1GM-1.)) ) ® ATAN( SQRT((GM-1.)/(GM+1.)* -
0003200 $(M1%°2,-1.)) ) - ATAN( SQRT(M1°*°*2.-1.) )

0003300 PT2=PT1

0003400 C

0003500 C...CALCULATE THE MACH NUMBER AT STATE 2

0003600 C

0003700 35 M2(I)=SQRT( ( (PT2/P2(I))°**((GM-1.)/GM ) -1.) ® (2./(GM-1.)) )
0003800 C

0003900 C...CALCULATE THE PRANDTL-MAYER ANGLE NU, AT STATE 2

0004000 C

0004100 3 NU2(I)=SQRT( (GM+1.)}/(GM-1.)) ® ATAN( SQRT( ((GM-1.)/(GM -
0004200 8+1.))*(M2(1)**2.-1.) ) ) - ATAN( SQRT(M2(I)**2.-1.) )

0004300 C

0004400 C...CALCULATE THE TOTAL PRANDTL-MAYER ANGLE, DELPM

0004500 C

0004600 DELPM(I)=NU2(I)~NU1
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ORIGINAL PAGE i3
OF POOR QUALITY

0004700 C
0004800 C...CALCULATE THE AMBIENT TOTAL PRESSURE

0004900 C

0005000 PTA=PA®*((1.4(GMA-1.)/2.%(MA®*2,))°*(GMA/(GMA~1.)))

0005100 C

0005200 C...CALCULATE THE SHOCK WAVE ANGLE, THETA

0005300 C

0005400 THETA(I)=ARSIN( SQRT(((P2(I)/PA)*(GMA+1.)+(GMA~1.))/(2.°GMA -~
0005500 $*MA%*2.)) )

0005600 C

0005700 C..,CALCULATE THE SLIP LINE ANGLE, DELSL

0005800 C

0005900 A= (GMA+1, ) *MA®*2,

0006000 B=2.%! MA®**2.%(SIN(THETA(I))®**2.) - 3. )

0006100 DELSL '1)=ATAN( 1./( TAN(THETA(I))*(A/B - 1.) ) )

0006200 C

0006300 C...CALCULAYE PHI FOR ITERATION SCHEME

0006400 C

0006500 PHI(I)=( DELPM(I) - DELSL(I) )

0006600 C

0006700 C...CHECK PHI FOR CONVERGENCE

0006800 C

0006900 IF( ABS( PHI(I) ) .LT. 0.000001 ) GO TO 30

0007000 C

0007100 C...COMPUTE DERIVATIVES FOR ITERATION SCHEMES

0007200 C

0007300

0007400 DNU2DM(I)=SQRT( (M2{I)**2.-1.0) ) /( M2(I)®**3.%((GM-1.)/2.) =~
0007500 g+ M2(1) )

0007600 DP2DTH(I)=( 4.°GMA®MA®**2.°PA*SIN(THETA(I))*COS(THETA(I)) )/ -~
0007700 S(GMA + 1.)

0007800 X=-1./{ 2.°SIN(THETA(I))*COS(THETA(I)) )

0007900 Yro( 2.°MA®**2, *SIN(THETA(I))*COS(THETA(I)) )/( MA**2,°SIN{ -
0008000 STHETA(I))®**2.-1. )

0008100 Z=( 4.°MA®*2.5SIN(THETA(I))*COS(THETA(I)) )/( 2.+MA®*2.%( -
0008200 S$(GMA+1.) - 2°%( SIN(THETA(I)))**2.) )

0008300 DDLDTH(I)=SIN(DELSL(I)) ® COS(DELSL(I)) ® ( X+Y+Z )

0008400 DP2DM2(I)m-( GM*M2(I)*P2(I) )/( 1.+({GM-1.)®0.56°M2(I)**2, )
0008500 C

0008600 C...CALCULATE CAP PHI

0008700 C

0008800 PHIC(I)=( DNU2DM(I)/DP2DM2(I) - DDLDTH(I)/DP2DTH(I) )

0008900 N=I+1

0009000 8 P2(N)=P2(1) - PHI(I)/PHIC(IX)

0009100

c
0009200 C...INDEX COUNTER
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0009300 C

0009400 I=I+l

0009500 GO TO 35

0009600 C

0009700 C...CONVERT ANGLES TO DEGREES

0009800 C

0009900 30 DELSL(I)=DELSL(I)*(1/0.01745239)

0010000 DELPM(I)=DELPM(I)*(1/0.01745239)

0010100 NU1=NU1*(1/0.01745239)

0010200 NU2(I)=NU2(I)*(1/0.01745239)

0010300 PR1=PA/PTA

0010400 PR2=P1/PA

0010500 PR3=PTA/PT1

0010600 PR4=PT1/P1

0010620 PR5=P2(I)/PA

0010700 C

0010800 C...WRITE FLOW QUANTITIES COMPUTED

0010900 C

0011000 WRITE(6,50) NU1,M1,PT1,MA,PTA,I

0011100 80 FORMAT(6F10.5,13,//)

0011200 WRITE(6,60) P2(I),M2(I),DELSL(I),DELPM(I),NU2(I)

0011300 60 FORMAT(5F10.5,/)

0011400 WRITE(7,70) P2(I),M2(I),DELSL(I),DELPM(I),NU2(I), -
0011500 $NU1,M1,P1,PT1,MA,PA,PTA,GM,GMA, I

0011600 70 FORMAT(//,'P2=',F10.5,5X, 'M2=',F10.5,5X, 'DELSL=",P10.5,//, -
0011700 $'DELPM=',P9.5,3X, 'NU2="',F10.5,4X, 'NU1=' ,F10.5,//, 'M1=", -
0011800 $F10.5,5X, 'P1=',F10.5,5X, 'PTi="',E10.5,//, '"MA=' ,P10.5,5X, 'PA="', -
0011900 $F10.5,5X, 'PTA=',E10.5,//,'GM="',F10.5,5X, 'GMA=",F10.5,4X, 'I=",13)
0012000 WRITE(8,80) PR2,PR3,NU1,NU2(I),DELSL(I),MA,PA,M1,PT1,PTA
0012100 80 FORMAT(10F11.3)

0012200 WRITE(9,89) PR2,PRS5,DELSL(I)

0012300 89 FORMAT(3F11.3)
0012400 99 STOP

0012500 END

EOF



NASA Report Documentation Page

National Aeronautics and
Space Admimistration

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA TM-100955

4. Title and Subtitie 5. Report Date
Analysis and Optimization of Truncated Scarf Nozzles August 1388
Subject to External Flow Conditions 6. Performing Organization Code

7. Author(s) 8. Pertorming Organization Report No.
Rickey J. Shyne E-4146

10. Work Unit No.

. Performing Organization Name and Address

National Aeronautics and Space Administration 1. Contract or Grant No.

Lewis Research Center
Cleveland, Ohto 44135-3191

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration

14. Sponsoring Agency Code

Washington, D.C. 20546-0001

15.

Supplementary Notes
This report was a thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Mechanical Engineering to the University
of Toledo, Toledo, Ohio in June 1988.

16.

Abstract
Results of a calculation of an optimized truncated scarfed nozzle were compared.

The truncated scarfed nozzle was designed for an exit Mach number of 6.0, i.e.,
the Mach number at the last nozzle characteristic is 6.0, with an external flow
Mach number of 5.0. The nozzle was designed by the Rao method for optimum thrust
nozzles modified for two-dimensional flow and truncated scarfed nozzle applica-
tions. This design was analyzed using a shock-fitting method for two-dimensional
supersonic flows. Excellent agreement was achieved between the design and analy-
sis. Truncation of the lower nozzle wall (cowl) revealed that there is an opti-
mum length for truncating the cowl without degrading the nozzle performance.
Truncation of the nozzle cowl past this optimal length should be analyzed in
trade-off studies for thrust loss versus gross vehicle weight. Plots of the
oblique shock wave equations were also identified which will allow computation

of slip line angle, dynamic pressure coefficient, or ambient Mach number for
various specific heat ratios.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Nozzle; Scarf; Optimization; Unclassified - Unlimited
Method of characteristics; Subject Category 02
Truncated; External flow
effects
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*
Unclassified Unclassified

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161




